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Abstract

While agreeing that dynamical models play a major role in cognitive science, we reject Stepp,

Chemero, and Turvey’s contention that they constitute an alternative to mechanistic explanations.

We review several problems dynamical models face as putative explanations when they are not

grounded in mechanisms. Further, we argue that the opposition of dynamical models and mecha-

nisms is a false one and that those dynamical models that characterize the operations of mechanisms

overcome these problems. By briefly considering examples involving the generation of action

potentials and circadian rhythms, we show how decomposing a mechanism and modeling its

dynamics are complementary endeavors.
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1. Introduction

Stepp, Chemero, and Turvey advocate embracing dynamical explanation as an alternative

explanatory framework to mechanistic explanation. While we defend a major role for

dynamical models in cognitive science, we reject the claim that they should be construed as

alternatives to mechanistic explanations. After presenting two points of clarification in

Section 2, we respond to their proposal in three ways. In Section 3, we review several

well-known problems to the view of explanation they advance. More important, in Section 4,

we demonstrate how dynamical models possessing explanatory force are best understood as

instances of bona fide mechanistic explanations. Finally, in Section 5, we briefly elaborate on

how decomposing a mechanism and modeling its dynamics are complementary endeavors.
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2. Two clarifications

First, Stepp et al. frame their argument as defending the very possibility of explanatory
dynamical models against mechanistically minded philosophers who propose that ‘‘dynami-

cal explanation is not genuinely explanatory, but merely describes phenomena.’’ However,

we (along with many other sensible advocates of the mechanistic perspective) do not hold

that all dynamical models in cognitive science are restricted to providing mere descriptions

of phenomena and are thereby explanatorily defective. In fact, the debate between us would

be far less interesting if this were the case. Instead, we readily grant that some (even many)

dynamical models in cognitive science and neuroscience do provide genuine explanations

for the phenomena they cover, and in doing so successfully transcend mere description.1

Below we discuss examples involving dynamical explanations of action potentials and cir-

cadian rhythms. The real pivot point for the debate centers on what makes explanatory

dynamical models explanatory. Here, there is genuine disagreement and room for debate

between us, to which we attend shortly.

Secondly, Stepp et al. falsely assume that mathematical modeling, especially modeling

involving differential equations, and mechanistic explanation are in opposition. They state

‘‘Dynamical explanations do not propose a causal mechanism that is shown to produce the

phenomenon in question. Rather, they show that the change over time in set of magnitudes in

the world can be captured by a set of differential equations.’’ This betrays a deep, but wide-

spread, confusion that causal-mechanical explanations and dynamical mathematical model-

ing (especially models taking the form of differential equations) are somehow mutually

exclusive. This is simply not true. Under a particular interpretation, the Hodgkin-Huxley

model of the action potential is both mathematical-dynamical, comprising a set of coupled

differential equations to describe the dynamics of the membrane potential, and a mechanistic

explanation describing how the components (ion channels) and the activities involving these

channels are organized and orchestrated to generate action potentials. When Hodgkin and

Huxley first offered their equations, they were based on data about membrane potentials;

details about the channels themselves were unknown. Their model initiated the search for

underlying parts and operations of the mechanism. The subsequent discoveries of channels

they anticipated, coupled with continued refinements in the equations themselves, provide a

rich example of how mechanistic research and dynamic modeling have supported each other.

Crucially, once the assumption that dynamics and mechanism are mutually exclusive is

jettisoned, one cannot simply use an observation about the increasing prevalence of dynamic

models in cognitive science to read off the emergence of a brand new paradigm of non-

mechanistic explanation as Stepp et al. do. Indeed, we readily admit that dynamical models

involving differential equations are increasingly commonplace in cognitive science and var-

ious domains of neuroscience. What must be shown is that dynamical models explain even

when they do not describe mechanisms, as Stepp et al. maintain. Justifying this claim

requires a much more comprehensive picture than we can give here of what this alternative,

nonmechanistic form of explanation looks like, and the rules for assessing these explana-

tions as either good or bad. In the following sections, we focus on this core question in the

debate between us: What is required of good dynamical explanations in cognitive science?
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3. Shortcomings of predictivist accounts of explanation

Mechanists, as correctly characterized by Stepp et al., endorse the view that models

explain in virtue of describing how the organized activities and interaction among compo-

nents in a system produce the target phenomenon. Putative dynamical explanations are to be

evaluated as good or bad according to this same mechanistic guideline; they are not subject

to different rules of assessment. Thus, the mechanistic perspective on dynamical models is

uniform and remarkably clear: Dynamical explanations do not provide a separate kind of

explanation; when they explain phenomena, it is because they describe the dynamic behav-

ior of mechanisms. What, then, do Stepp et al. propose as their alternative, nonmechanistic

explanatory framework? And by what standard are their explanations to be evaluated?

The alternative view of explanation Stepp et al. embrace might be termed predictivism.

According to predictivism, the explanatory power of dynamical models derives from their

descriptive and predictive power. In advocating this prediction-based view of explanation,

Stepp et al. follow along well-trodden lines within the philosophy of science tracing back to

Hempel’s (1965) covering law account of explanation. The attempt to link the explanatory

force of dynamical models to their predictive import in this manner is also not new. van

Gelder and Port (1995) stressed that dynamical explanation ‘‘yields not only precise

descriptions…but also predictions which can be used in evaluating the model’’ (p. 15). In

similar fashion, van Gelder (1998, p. 625) asserts that ‘‘[m]any factors are relevant to the

goodness of a dynamical explanation, but the account should at least capture succinctly the

relations of dependency, and make testable predictions.’’

Predictivism confronts many well-known shortcomings (Salmon, 1989). For example, by

knowing a law-like regularity, one can predict a storm’s occurrence from falling mercury in

the barometer, but the falling mercury does not explain the occurrence of the storm. Rather,

a common cause—a drop in atmospheric pressure—explains both the falling barometer

value and the impending storm. Along these same lines, a dynamical model of a given cog-

nitive phenomenon might be predictively adequate (i.e., the model predicts the relevant

aspects of the phenomenon with the required precision and accuracy), and yet its variables

may represent only magnitudes that are mere correlates of a common cause for that phenom-

enon. Just as we reject the claim that the barometer drop explains the storm, we should also

resist the claim that such a dynamical model explains. Explanatory adequacy is thus not

(merely) predictive adequacy. Moreover, predictivism lacks the resources to distinguish

which models with the same predictive import are explanatory. These considerations, of

course, directly bear on Stepp et al.’s claim that the HKB model explains to the extent that it

is capable of generating accurate quantitative predictions (e.g., for the observed phase-tran-

sitions in subject behavior, and possibly as well for unobserved effects on the behavioral

dynamics induced by future experimental manipulations).

The second major problem with Stepp et al.’s predictivist view is that it lacks the

resources to distinguish describing and explaining a phenomenon. The problem is that vari-

ables posited in dynamical models often represent measurable quantities at roughly the level

of the cognitive or behavioral performance itself. Indeed, the favored interpretation of the

HKB model (the one Stepp et al. endorse) is that it characterizes the temporal evolution of
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one purely behavioral dependent variable (relative phase) as a function of another purely

behavioral independent variable or order parameter (finger oscillation frequency). As a

result, the HKB model offers, in Robert Cummins’s (2000) language, a description of an

effect and not an explanation.

4. What explanation requires?

At the center of our differences with Stepp et al. is what is required for explanation. This

is not just a dispute about the word explanation but about what is sought by scientists when

they try to develop an explanation. One strategy in recent philosophy of science for distin-

guishing what explanations provide is unification of multiple phenomena under a common

generalization (Friedman, 1974; Kitcher, 1989). Stepp et al. embrace this understanding of

explanation when they claim that dynamicist models ‘‘unify disparate phenomena.’’ This is

achieved when models describe general features about the behavior of systems indepen-

dently of the material facts about these systems. For example, they point to the fact that the

core equation of the HKB model can be used to describe similar coordination patterns

implemented across physically disparate systems. We agree that an important role of

dynamical modeling is to reveal such widespread patterns. But we deny that the range of

application for a given dynamical model (e.g., that it applies to bimanual coordination,

social coordination, locomotion, etc.) bears on whether it explains the phenomenon in ques-

tion or not. If we want to know why humans exhibit the phenomenon described in the HKB

model, it is merely suggestive to note that a similar pattern is observed in a variety of other

systems. Given the pattern alone we have no better idea than we had as to how it is that

humans (or any other system for that matter) behave in compliance with the model. After

all, not all systems do—a pair of boulders does not exhibit HKB dynamics. If anything,

then, the broad scope of certain dynamical models merely indicates that many other similar

phenomena require explanations as well, and perhaps these explanations will be similar.

Whether they will in fact be similar is, of course, an open empirical question on which we

take no stand here.

What is required to explain a given phenomenon is to identify the responsible mechanism

and the conditions under which it is operating. Although not acknowledged by Stepp et al.,

many proponents of the dynamical approach, including prominent modelers such as Kelso,

appear to have recognized the importance of mechanistic explanation in their own ongoing

research programs. Since its original phase of development, Kelso and colleagues have

unreservedly pursued a line of research to understand how the behavioral regularity depicted

by the HKB model might result from features of the underlying organization of component

neural systems and the dynamics of their interactions (see, e.g., Jantzen, Steinberg, & Kelso,

2009; Jirsa, Fuchs, & Kelso, 1998; Schöner & Kelso, 1988). More specifically, Kelso and

colleagues (Jirsa et al., 1998) have proposed a neural field model connecting the observed

phase shift described by HKB to the underlying dynamics of neural populations in motor

cortex. By mapping connections between the model components and components of neural

systems, Kelso et al. have undeniably started to transform their model into a mechanistic
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one. In other words, they seem to recognize what Stepp et al. do not, namely the explanatory

value of pushing beneath the regularities couched at the behavioral level to reveal underly-

ing mechanisms.

It should also be noted that this development raises a final problem for the predictivist

view that Stepp et al. endorse. Because predictivism assimilates explanatory power with pre-

dictive power, it renders impossible increasing the quality of one’s explanation without

increasing its predictive reach. Yet Kelso and his collaborators, through their investigations

into the mechanistic underpinnings for the HKB phenomenon, seem to be doing exactly that.

Suppose the original HKB model successfully identified the significant variables from which

the vast majority of the variance in the phenomenon can be accounted, all without under-

standing or specifying the causal structures by which those variables change or by which

those variables influence the phenomenon, as Stepp et al. imply. If Kelso and colleagues

eventually succeed and learn how the observed phase shift in finger coordination relates to

underlying dynamics of neural populations in motor cortex, this might result in refinements

to the original model (e.g., via inclusion of additional variables standing for the relevant

neural components and their dynamical interactions). Many, us included, would want to

argue the supplemented HKB model provides a deeper, better explanation for the phase shift

phenomenon than the original model. Yet the supplemented model might have no greater

predictive power in spite of its improvement as an explanation.

A prediction-centric view of explanation seems to miss out on precisely those features

that distinguish better from worse explanations, good explanations from bad. The mechanis-

tic perspective, on the other hand, is capable of capturing this explanatory improvement,

since mechanists are committed to the idea that predictive and explanatory adequacy can

and do vary independently of one another. According to the mechanistic viewpoint, predic-

tive power is crucial but insufficient for explanation. What more is required to transform a

mere dynamical model into a genuine dynamical explanation is, as we have already stated, a

description of the mechanism.

5. The complementarity of dynamics and mechanisms

It should be clear that our disagreement with Stepp et al. does not concern the importance

of dynamics in cognitive science. Even if, as we have contended, some dynamical models

do not explain, they may still make important contributions to cognitive science—for exam-

ple, by revealing the dynamic behavior of cognitive systems. Often they may do much more.

As we claimed in the case of the Hodgkin-Huxley equations, their equations helped guide

the search for the components of the responsible mechanism. In the decades since they

introduced their equations, there has been a highly productive interaction between the

discovery of additional channels for other ions and the incorporation of additional equations

characterizing the resulting conductances.

In support of their conception of explanation by dynamical models not tied to mecha-

nisms, Stepp et al. appeal to the application of the strong anticipation model of Voss (2000).

The Voss model purportedly explains the synchronization of multiple neuronal oscillators in
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the mammalian suprachiasmatic nucleus responsible for generating circadian rhythms in

which the neurons not receiving direct entrainment by the animal’s exposure to light are

phase advanced to those that are entrained by light.2 We do not deny that dynamical models

can illuminate initially puzzling phenomena such as the phase relations between driven and

nondriven oscillators. But without specifying the parts and operations in the mammalian cir-

cadian system that performs such functions as coupling between oscillators, this account is

empty. The model remains only a how possibly model, not an explanation of the coupling of

oscillators in mammals. Other features of the Voss model deserve brief comment. The

model characterizes the oscillatory processes of springs, not neurons. This may not be a

problem: It is a standard and useful strategy to employ models that merely save the pheno-

mena generated by an individual mechanism when the focus is on the interactions of that

mechanism with others. Researchers, for example, tend not to use Hodgkin-Huxley style

equations when modeling complex circuits. However, if it turns out that the behavior

depends upon the particulars of the individual mechanism, it becomes critical to take those

features into account and revise the model. Once again, mechanistic decomposition and

dynamic modeling are complementary, not opposed (for further discussion, see Bechtel &

Abrahamsen, 2010; Kaplan & Craver, in press).

6. Conclusion

We have raised several objections to Stepp et al.’s proposal that dynamical models

eschewing a concern with underlying mechanisms are explanatory. We have also attempted

to demonstrate that the opposition between dynamic and mechanistic explanations is a false

one. Dynamic accounts are explanatory when they characterize the operations of the under-

lying mechanism (including how it is related to features of its environment). When they do

not, they fail to provide explanations, whatever their other virtues.

Notes

1. It is important to note that no parties to the debate should wish to hold that all dynami-

cal models are explanatory. As van Gelder (1998), one prominent advocate of the

dynamical approach, has clearly pointed out, good dynamical explanations can be

weeded out from bad dynamical explanations, which include mathematical models

involving little more than ad-hoc curve fitting.

2. Part of Stepp et al.’s point in bringing this up is to argue against the need for represen-

tations in such accounts. A detailed discussion of representations would take us

beyond the focus of this paper (see Bechtel, in press, for more discussion); suffice it to

note that advancing a dynamical model does not show that a system is not using repre-

sentations. One must analyze the mechanism whose behavior is being modeled to

determine whether it contains internal processes that carry information external to it.

Another of Stepp et al.’s argument against representations underlying circadian

D. M. Kaplan, W. Bechtel ⁄ Topics in Cognitive Science 3 (2011) 443



rhythms is the finite persistence of oscillations in free-run conditions. This only counts

against a simple characterization of representations as fixed stable structures always

available to perform their role. There is no basis for saddling defenders of representa-

tions with such an account.
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Schöner, G., & Kelso, J. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239,

1513–1520.

Voss, H. U. (2000). Anticipating chaotic synchronization. Physical Review E, 61, 5115.

444 D. M. Kaplan, W. Bechtel ⁄ Topics in Cognitive Science 3 (2011)


